Whose idea was that? Source monitoring for idea ownership following elaboration

Louisa-Jayne Stark a; Timothy J. Perfect a

a University of Plymouth, UK

Online Publication Date: 01 October 2007
To cite this Article: Stark, Louisa-Jayne and Perfect, Timothy J. (2007) 'Whose idea was that? Source monitoring for idea ownership following elaboration', Memory, 15:7, 776 - 783
To link to this article: DOI: 10.1080/09658210701643042
URL: http://dx.doi.org/10.1080/09658210701643042

PLEASE SCROLL DOWN FOR ARTICLE

Full terms and conditions of use: http://www.informaworld.com/terms-and-conditions-of-access.pdf

This article maybe used for research, teaching and private study purposes. Any substantial or systematic reproduction, re-distribution, re-selling, loan or sub-licensing, systematic supply or distribution in any form to anyone is expressly forbidden.

The publisher does not give any warranty express or implied or make any representation that the contents will be complete or accurate or up to date. The accuracy of any instructions, formulae and drug doses should be independently verified with primary sources. The publisher shall not be liable for any loss, actions, claims, proceedings, demand or costs or damages whatsoever or howsoever caused arising directly or indirectly in connection with or arising out of the use of this material.
Whose idea was that? Source monitoring for idea ownership following elaboration

Louisa-Jayne Stark and Timothy J. Perfect
University of Plymouth, UK

Unconscious plagiarism (UP) occurs when an individual claims a previously experienced idea as their own. Previous studies have explored the cognitive precursors of such errors by manipulating the ways that ideas are thought about between initial idea exposure and later test. While imagining other’s ideas does not increase rates of UP relative to control on either a recall-own or generate-new task, improving others’ ideas substantially increases such errors in the recall-own task. This study explored the effects of elaboration on rates of UP when a source-monitoring test replaced the recall-own test. Plagiarism was again observed following idea improvement but not idea imagery even though participants engaged explicit source evaluation. Thus the probability of plagiarising another’s idea appears linked to the generative nature of the idea processing performed.

Plagiarism is the act of making an idea one’s own (Saalbach, 1970) and has been loosely and variously defined in terms of cheating, stealing, and deception (Carroll, 1992). Although definitions of plagiarism vary from one era and one culture to the next (Martin, 1971), plagiarism is generally regarded as the appropriation of someone else’s work without permission or appropriate acknowledgement of the original source. Unconscious plagiarism has been implicated in a number of legal cases1,2 where the accused are adamant that their composition was not appropriated from elsewhere but rather is an original creation. Conceivably, when creative individuals are engaged in product generation (e.g., song composition, or academic writing) they are highly motivated to make correct source judgements to prevent themselves from blatantly copying, and yet errors still occur. Research on unconscious plagiarism has generally followed a three-stage paradigm (Brown & Murphy, 1989) in which participants in a group setting initially generate responses (generation phase) such as category exemplars (Bredart, Lampinen, & Defeldre, 2003; Brown & Murphy, 1989; Macrae, Bodenhausen & Calvini, 1999), solutions to puzzles (Marsh & Bower, 1993), or solutions to problems (Marsh, Landau, & Hicks, 1997). Two testing phases follow, where participants attempt to recall their own prior answers (the recall-own phase) and suggest new answers (generate-new phase). Plagiarism is scored in either test when participants incorrectly report information that was previously given in the generation phase by another participant (or computer partner). Rates of plagiarism obtained in each test vary across studies, but higher rates of plagiarism are observed when more creative tasks are used at generation and when testing follows a 1-week retention interval (Brown & Halliday, 1991; Marsh & Bower, 1993).

Stark, Perfect, and Newstead (2005) incorporated an elaboration phase into this three-stage paradigm following initial generation, on the

1 Three Boys Music v. Michael Bolton, 212 F.3d. 477 (9th Cir. 2000).

Address correspondence to: Professor Tim Perfect, School of Psychology, University of Plymouth, Drake Circus, Plymouth, PL4 8AA, UK. E-mail: tperfect@plymouth.ac.uk

© 2007 Psychology Press, an imprint of the Taylor & Francis Group, an Informa business
http://www.psypress.com/memory DOI:10.1080/09658210701643042
basis that in real-world cases of plagiarism it is likely that extended time periods elapse during the interval between exposure to an initial idea and later plagiarism. During this interval it is likely that a creative artist may think about, and work on previous ideas, and this process may influence subsequent rates of plagiarism. Consequently, Stark et al. (2005) used a generation phase in which participants generated novel uses for a brick, paperclip, button, and shoe (Alternate Uses Test; Christensen, Guilford, Merrifield, & Wilson, 1980). During the retention interval, participants formed images of some ideas (imagery elaboration, or I-E), thought of three improvements to other ideas (generative elaboration or G-E), or merely heard the ideas again. A further set of ideas were not re-presented during the retention interval and constituted a control set. The recall-own and generate-new tests were then conducted as before. The results were generally consistent with a depth of processing account (Craik & Lockhart, 1972). Both forms of elaboration increased the strength of memory as indicated by improved recall in the recall-own phase and reduced plagiarism errors in the generate-new phase, relative to control. However, in the recall-own phase improving ideas substantially increased the propensity of participants to plagiarise another person’s ideas as their own, whereas imagining ideas did not.

This dissociation in unconscious plagiarism across tasks following the different forms of elaboration may be explained using the source-monitoring framework (Landau & Marsh, 1997; Macrae et al., 1999). In the generate-new phase, participants must remember the ideas from the generation phase in order to prevent those ideas being incorrectly generated as new. Performing either type of elaboration serves to increase the strength or familiarity of the old ideas and so both to improve the likelihood of recall of those ideas, and to suppress the likelihood of outputting the ideas during the generate-new task, regardless of any additional memorial detail that may indicate who initially generated the idea (Landau & Marsh, 1997; Macrae et al., 1999). However, in the recall-own phase an old idea must be recalled, but the source of that idea must also be recalled to prevent another’s idea being incorrectly reported as one’s own. Therefore, performance in the recall-own phase is likely more sensitive to source-specifying information. Prior research has demonstrated that factors that reduce the quality or detail of memory characteristics such as distraction at idea encoding (Macrae et al., 1999), increased source similarity (Macrae et al., 1999) or reduced variation in information from different sources (Landau & Marsh, 1997) all impair the ability to distinguish between the sources, and so result in increased levels of recall-own plagiarism without impacting on generate-new plagiarism. Idea improvement may act in a similar manner, enhancing the cognitive operations associated with others’ ideas. Subsequently at test, although improved ideas may be correctly remembered as old, they may cognitively resemble self-generated ideas and be mistakenly reported as such. Imagery, on the other hand, may not have the same effect because imagined ideas may contain perceptual details and so resemble perceived, externally generated information and thereby be distinctive from one’s own ideas (Stark et al., 2005). Even when the imagery has been strengthened through imagination of improved ideas, imagery does not increase plagiarism (Stark & Perfect, 2006). Thus, it appears it is the process of improvement that leads to plagiarism on the recall-own task rather than the strength or content of the improved ideas.

In the recall-own phase the participant’s primary goal is recall and although performance is sensitive to source-specifying information, source ascription is not the primary objective. Rather, cognitive resources are split between completing the taxing task of recall and monitoring sources effectively. Consequently participants may make only cursory, heuristic source judgements (Johnson, Hashtroudi, & Lindsay, 1993; Johnson & Raye, 2000; see also Marsh et al., 1997). In contrast, in source-monitoring tests, where prior information from different sources is presented with new information and the primary instructions are to ascribe source, more controlled, systematic monitoring processes are likely to be evoked with more extended reasoning judgements that help evaluate the veracity of the source and discredit misleading information (Johnson et al., 1993).

When source-monitoring tests have been incorporated into the three-stage unconscious plagiarism paradigm, participants have been less likely to plagiarise and make source errors than when they were completing a secondary source test, such as the generate-new test (Marsh et al., 1997). However, although relatively accurate source monitoring is possible following a single idea encounter it is not clear whether such
accurate source monitoring is possible following additional idea development during the retention interval. Consequently, the current study replicates the use of the elaboration phase pioneered by Stark et al. (2005) but makes source monitoring the primary task objective at test. Administering a source-monitoring test as a primary goal should encourage more controlled, extended reasoning processes to evaluate memories (Marsh et al., 1997) but whether such stringent source decision processes are sufficient to distinguish source and thereby reduce plagiarism following idea improvement is uncertain. Given that idea improvement causes plagiarism in a recall-own task, the question that is being asked here is straightforward. Do participants claim improved ideas as their own as a result of failing to engage in source monitoring (cf. Marsh et al., 1997) or because the source monitoring they do engage in cannot distinguish between own ideas and improved ideas? If the effects of idea-improvement are replicated on a source-monitoring task, then it would strongly favour the second of these two possibilities.

As well as being of theoretical interest, the present study also has applied potential. In the real world individuals invest a great deal of cognitive effort into completing their goal (e.g., writing a story, a song, an article) and may, under externally pressured situations, not engage in source monitoring to an appropriate degree. On the other hand, individuals such as writers or artists have a strong motivation to avoid plagiarism, and so may be expected to pay particular attention to the source of their creative ideas. For such people the way in which ideas get generated, and the source of those ideas gets ascribed, is of more than academic concern.

METHOD

Participants

A total of 40 undergraduate students participated in the generation phase. However, 5 participants failed to attend the second testing session and only 35 participants completed the experiment. Participants were undergraduates from the University of Plymouth and received partial fulfilment of a course requirement for their participation in this study.

Procedure

Participants were randomly assigned into groups of four. Participants remained in the same group for all phases of the study.

Generation phase. Initially, in the generation phase the experimenter read aloud an object name (e.g., brick, paperclip, shoe, and button) and asked participants to think of non-traditional uses for such objects (e.g., a brick as a book shelf). Object names were presented individually and for each object participants were instructed, in a pre-determined random order, to say out loud their first idea. Once each participant had given their first idea, they were then instructed to give their second idea and so on until each participant had generated four ideas to each of the four presented objects. A total of 64 ideas were generated in the study. Examples of the ideas that participants generated included to use a “shoe as a watering can”, “brick as a bookshelf”, and “buttons to play tiddlywinks”.

Elaboration phase. The elaboration phase immediately followed generation. A quarter of the previously generated ideas (one idea from each participant, from each category) were then subject to the following condition treatments. For the imagery-elaboration ideas participants rated the ideas on 5-point rating scales for how easy they were to imagine (1 = difficult to imagine, 5 = easy to imagine) and how effective they thought the ideas would be (1 = not effective, 5 = very effective). For the generative-elaboration ideas participants wrote down three ways to improve the given idea. For the re-presented items participants heard the ideas a second time but were not instructed to elaborate them in any way. Control ideas were not re-presented at this stage. The order in which participants performed these tasks was counterbalanced across the groups. The experimenter read these ideas aloud in a pre-determined random order, instructing the participants to imagine, elaborate, or listen to the idea as appropriate. This task completed the first session, taking approximately 40 minutes.

Source-monitoring phase. One week later, participants returned to complete the 64-item source-monitoring test. Each participant received a uniquely tailored booklet that contained previously generated ideas and new ideas. Each test contained all 48 of the other participants’ initial ideas from the generation phase (Others’ ideas).
It also contained eight of the participants’ own ideas that they produced in the initial generation phase (Own ideas), with an equal number of ideas from each elaboration status and each object. Another eight ideas were new ideas that had previously not been given in the generation phase (New ideas). All of these ideas were presented in a fixed quasi-random order that was constant for each participant (i.e., Own ideas appeared in positions 1, 6, 14 etc.). Participants were required to read each idea and indicate the original source by circling the corresponding letter (i.e., “M” for my original idea, “O” for other participants’ idea, and “N” for a new idea). This phase completed the study and lasted approximately 15 minutes.

RESULTS

Correct source recognition

Following the 1-week retention interval, participants exhibited an overall mean source recognition accuracy of 79.5%, with an accuracy of 77.1% for identifying the source of their own ideas, 77.6% for other participants’ ideas, and 92.9% for new ideas. The effects of the different kinds of elaboration (control, re-presentation, I-E, and G-E) on source-monitoring performance are shown in Table 1. This depicts how participants ascribe source to ideas that were new, originally from someone else, or originally their own, following each form of elaboration. In the analyses that follow we begin by analysing the effects of elaboration on the overall accuracy of source judgements for own, other, and new ideas. We then explore the effects of elaboration on two kinds of source-attribution errors: plagiarism (falsely claiming an idea as one’s own) and idea disowning (falsely claiming one’s own idea originated elsewhere).

Own ideas. Numerically it appeared that elaborating Own ideas improved subsequent source memory of those ideas relative to the two baseline conditions. However a within-subjects ANOVA revealed that this effect was not significant, $F(3, 102) = 1.58, p = .20$.

Others’ ideas. A within-subjects ANOVA revealed a significant main effect of elaboration status on correct source recognition of Other ideas, $F(3, 102) = 43.95, p < .001$. Multiple pairwise comparisons were conducted with a Sidak-adjusted alpha level of .05. These revealed that experiencing additional exposure to the ideas through re-presentation or elaboration provided a source recognition advantage for representation relative to control ideas. Elaborating the ideas by either I-E or G-E improved source recognition relative to ideas that were re-presented or control, but there was no difference between the two forms of elaboration.

Source memory errors

There were two interesting classes of source memory error for old ideas. The main focus was on the unconscious plagiarism errors that occurred when participants claimed another’s idea as their own. The second error was the “disowned ideas” that occurred when a participant’s own idea was attributed to someone else (the opposite of UP errors). The effects of elaboration on these two forms of error were analysed separately.

Unconscious plagiarism. Plagiarism errors were scored when another participant’s idea was incorrectly labelled “my idea” in the source-monitoring task. In this study, 80% of the participants exhibited at least one unconsciously plagiarised error, and over all conditions 5% of other-participant ideas were plagiarised. A within-subjects ANOVA revealed that in a source-monitoring task the elaboration manipulation reliably affected the observable levels of plagiarism $F(3, 102) = 6.38, p < .001$. Multiple pairwise comparisons revealed that the generative-elaborated ideas were plagiarised more than any of the other ideas. Imagery-elaborated ideas were not plagiarised any more that re-presented ideas or control ideas. The remaining means did not differ. Consequently, performing generative elaboration significantly increased the likelihood that the participant would subsequently believe other people’s ideas were originally their own, in line with the recall-own
data reported previously (Stark & Perfect, 2006; Stark et al., 2005).

Disowned ideas. There was no significant main effect of elaboration on participants’ own ideas that were incorrectly reported as someone else’s idea, $F(3,102) = .757$, $p = .53$, and no effect of elaboration on the likelihood that those ideas would be reported as a new, $F(3, 102) = 1.00$, $p = .40$. This indicated that elaborating one’s own ideas did not affect such errors relative to baseline.

DISCUSSION

In the source-monitoring task implemented here participants were shown previously generated ideas and were asked to indicate source as a primary task focus, and thus controlled, systematic processes were likely to have been utilised to evaluate source information (Chaiken, Lieberman, & Eagly, 1989; Johnson et al., 1993; Landau & Marsh, 1997; Posner & Snyder, 1975; Shallice, 1988). This greater focus on the source of the original ideas did indeed result in fewer plagiarism errors than have been observed in our previous recall-based studies (Stark & Perfect, 2006; Stark et al., 2005), in line with the pattern reported by Marsh et al. (1997). Nevertheless, elevated levels of plagiarism were observed following idea improvement. Improving an idea led to three times the rate of plagiarism than for imagined, re-presented, or control ideas. This pattern replicates that seen with a recall-own task in Stark et al. (2005) but is particularly striking here given the high levels of correct source recognition (c. 85%) following the two forms of elaboration.

Most pertinently here, when participants were engaged in a task that required source judgements to be made as a primary objective, plagiarism was observed and related to the nature of the elaboration engaged in. Thus, following idea improvement participants were not as able to effectively source monitor in order to distinguish their own ideas from others’ ideas. Consequently, it appears that idea improvement does cause source confusion and so the increase in plagiarism observed in the recall-own tasks following idea improvement may result at least in part from inadequate source monitoring rather than failure to perform such monitoring.

These findings are explicable in terms of the source-monitoring framework that indicates how memories of different types may vary, both in terms of their accuracy and their experiential content (Johnson et al., 1993). Within a traditional

TABLE 1

Percentage of correct identifications and source confusions in source memory

<table>
<thead>
<tr>
<th>Item origin</th>
<th>New idea</th>
<th></th>
<th>Other's idea</th>
<th></th>
<th>My idea</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Response</td>
<td>% SD</td>
<td>% SD</td>
<td>% SD</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Control ideas</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>“New idea”</td>
<td>92.9 0.9</td>
<td>36.4 2.2</td>
<td>10.0 0.5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>“Other’s idea”</td>
<td>71.1 0.8</td>
<td>60.7 2.2</td>
<td>18.6 0.5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>“My idea”</td>
<td>0.4 0.2</td>
<td>2.9 0.6</td>
<td>71.4 0.7</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Re-presented ideas</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>“New idea”</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>“Other’s idea”</td>
<td>22.9 2.0</td>
<td>11.4 0.3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>“My idea”</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Imagery-elaborated ideas</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>“New idea”</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>“Other’s idea”</td>
<td>90.5 1.2</td>
<td>14.3 0.5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>“My idea”</td>
<td>3.3 0.7</td>
<td>78.6 0.6</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Generatively elaborated ideas</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>“New idea”</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>“Other’s idea”</td>
<td>85.2 1.7</td>
<td>10.0 0.4</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>“My idea”</td>
<td>8.8 1.3</td>
<td>85.7 0.5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Unconsciously plagiarised errors (others’ ideas claimed as own) appear in boxes. Disowned ideas (own ideas attributed to others) appear in ellipses. “It had to be you”/ “it had to be me” (new ideas attributed to source) appear inside the circle.
plagiarism domain. Bredart et al. (2003) demonstrated that externally experienced information included significantly more information about qualitative features at study than plagiarised or new information. Participants’ own ideas were reported on average to possess more auditory and contextual detail, more associations with a mental image, feeling, or specific thought about the idea, and more associations with information that related to a particular retrieval strategy, but there was an overlap in the distributions with plagiarised ideas. In the present study participants were generally able to distinguish effectively between their own ideas with rich experiential detail and others’ ideas that lack this experiential detail. They could also distinguish their own ideas from imagined ideas that are perhaps more perceptually rich. But they were less able to distinguish their own ideas from others’ ideas that had been improved. Hence, the memory characteristic information obtained throughout the generative process of idea improvement may closely resemble the experiential detail for their own idea and so mislead participants that such ideas were initially their own.

In addition to the UP data, there is another common pattern seen in the data: the “it had to be you effect” (Hoffman, 1997). This error reflects the tendency for participants to attribute a weak item to another participant rather than to themselves. This was seen not only for new items but also for the participant’s own ideas that were quite often “disowned” and attributed to others. Presumably, in part, this reflects the fact that more ideas originally came from other people than from themselves, but nevertheless G-E reliably reduces this error. These errors are a further demonstration of changes in ownership attribution that are due to factors unrelated to the original generation. In fact, this “it had to be you” effect may well have dampened down the observed rates of unconscious plagiarism, as ideas were more often attributed to others than to the self when participants were uncertain about source. Thus, idea improvement had the tendency to increase ownership of ideas. For ideas that were originally their own, this bias was “correct” and helped overcome the “it had to be you” effect. However, for others’ ideas, this bias opposed the “it had to be you” effect and induced unconscious plagiarism.

The salient rates of 9% unconscious plagiarism obtained in the source-monitoring test were nevertheless lower than the 26–40% plagiarism obtained in equivalent recall-own studies (Stark & Perfect, 2006; Stark et al., 2005). Such reduced levels of plagiarism in the source-monitoring test are likely due to the nature of the test and the execution of the more extended, stringent source-monitoring judgements used to avoid source error. For instance, in the source-monitoring test, half of participants’ initial ideas were presented but those chosen were experimenter-selected and arbitrary, with equal numbers selected from each elaboration status. In contrast in a recall test, participants record those ideas that they can remember to a total of 16 ideas, but in Stark et al. (2005) participants only reported a mean of 8 ideas, largely comprising elaborated ideas. Thus it is possible that the ideas that appeared on the source-monitoring test may not reflect those that participants would have freely reported, thereby increasing correct recognition and simultaneously reducing the likelihood of plagiarising “other” ideas.

Real-world plagiarists have been found guilty of plagiarising information that they were exposed to many years earlier, 20 years earlier in the case of Michael Bolton mentioned in footnote 1. Although the unconscious plagiarism literature demonstrates that separating generation and testing with a 1-week delay increases plagiarism relative to testing immediately following generation (e.g., Brown & Halliday, 1991; Marsh & Bower, 1993), the subsequent effects of implementing longer retention intervals has not been investigated. Consequently, the longer-term stability of these obtained plagiarism rates is unclear and this follows whether memory is assessed using a primary (source-monitoring test) or a secondary (recall-own task) source task. It is possible, on the one hand, that longer retention intervals may increase the rates of plagiarism relative to those obtained following 1-week testing, but on the other hand the observable rates of plagiarism may reduce as memories fade over time.

To address these possibilities a follow-up test was conducted on participants from the present study. Three months after the source-monitoring test had been completed, participants were unexpectedly invited to return to complete an “experimental extension study”, and 12 participants responded. This follow-up investigated whether plagiarised errors remained over time and examined the extent of such errors when performance was measured using a recall-own task that did not provide any potential source cues. Participants were presented with the object
names to which they had generated ideas at the start of the study (brick, button, paperclip, and shoe) and instructed to report the ideas that they had offered in the initial generation phase. Recall was not forced.

The results demonstrated that participants correctly recalled 5.4 of their initial ideas and plagiarised 5.5 of others’ ideas as their own, and thus participants were just as likely to remember a plagiarised idea as they were to recall one of their own ideas. A within-subjects ANOVA indicated that there was a significant main effect of elaboration status on the likelihood of such errors, $F(3,33)=11.8$, $p<.001$, and Sidak adjusted multiple comparisons revealed that participants plagiarised ideas that had been previously been subject to G-E more than any of the other ideas (none of the remaining means differed). Overall, 52% of the ideas that were plagiarised had been subject to G-E, while 23% had been subject to I-E, 15% had been re-presented, and 11% were control ideas. Thus the plagiarism rates for G-E ideas across this retention interval were very high and exceeded those obtained in the preceding source-monitoring test (9%) and those obtained in prior studies where recall-own tests followed a 1-week retention interval (approximately 40%; Stark & Perfect, 2006; Stark et al. 2005). Performing stringent source monitoring on an earlier occasion did not appear to prevent or reduce additional intrusions on the later recall-own task, and although conclusive inferences should not be drawn from this finding due to the limited response rate and alternate form of memory assessment, these results do support the robust nature of G-E plagiarised errors. Systematically pursuing the effects of different retention intervals on subsequent rates of unconscious plagiarism would provide an interesting direction for future research.

These studies support the source-monitoring framework and have important implications for the real world. Landau and Marsh (1997) previously claimed that source monitoring in early stages of idea development might obstruct progress because it might inhibit generation of ideas that are similar to, but sufficiently different from, older ideas. They therefore suggested that a creative artist such as a writer might better benefit from source scrutiny once the novel product is finished. In this way the creative process could proceed unimpeded and the writer could later apply the more stringent type of decision processes that are used by participants to avoid plagiarised errors. However, after an individual has been exposed to a basic idea and invested effort in re-drafting and improving that information (similar to the improvement process G-E used here), identifying the original source may be difficult, and this follows even when individuals are highly motivated to be accurate and carefully source monitor to avoid plagiarism errors. In light of these findings, creative artists who do not source monitor until the novel product is finished, but who have engaged in an elaborative developmental process after exposure to a basic idea, may be particularly susceptible to plagiarised errors. Developing basic information is a natural process used by politicians proposing a campaign, advertising executives launching a product, or academics designing experiments or devising theoretical models. In all such cases, a great deal of time and effort is involved in developing, improving, and coherently expressing such information. Moreover, additional real-word constraints such as internal stress or external time pressure—which were not accurately encapsulated in these studies—may further disrupt the source-monitoring process by which possible ideas are assessed, thereby resulting in an increased probability of source misattribution (Landau, Marsh, & Parsons, 2000; see also Johnson et al., 1993). Thus, in everyday life, successfully avoiding unconsciously plagiarised errors, even when highly motivated to do so, may be harder than previously believed.

Manuscript received 14 September 2006
Manuscript accepted 4 September 2007
First published online 14 September 2007

REFERENCES

